首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106021篇
  免费   1783篇
  国内免费   848篇
测绘学   2745篇
大气科学   7707篇
地球物理   20437篇
地质学   39715篇
海洋学   8965篇
天文学   22786篇
综合类   369篇
自然地理   5928篇
  2022年   483篇
  2021年   852篇
  2020年   984篇
  2019年   1019篇
  2018年   4309篇
  2017年   4071篇
  2016年   3818篇
  2015年   1715篇
  2014年   2718篇
  2013年   4853篇
  2012年   3613篇
  2011年   5873篇
  2010年   5103篇
  2009年   6167篇
  2008年   5391篇
  2007年   5673篇
  2006年   3639篇
  2005年   3198篇
  2004年   3048篇
  2003年   2882篇
  2002年   2612篇
  2001年   2296篇
  2000年   2120篇
  1999年   1611篇
  1998年   1710篇
  1997年   1673篇
  1996年   1306篇
  1995年   1460篇
  1994年   1280篇
  1993年   1133篇
  1992年   1131篇
  1991年   1023篇
  1990年   1112篇
  1989年   949篇
  1988年   900篇
  1987年   1070篇
  1986年   897篇
  1985年   1157篇
  1984年   1222篇
  1983年   1190篇
  1982年   1137篇
  1981年   995篇
  1980年   984篇
  1979年   856篇
  1978年   844篇
  1977年   777篇
  1976年   741篇
  1975年   711篇
  1974年   725篇
  1973年   683篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
31.
32.
A simple model of fluid particle advection induced by the interaction of a point vortex and incident plane flow occurring near a curved boundary is analyzed. The use of the curved boundary in this case is aimed at mimicking the geometry of an isolated bay of a circular shape. An introduction of such a boundary to the model results in the appearance of retention zones, where the vortex can be permanently trapped being either stationary or periodically oscillating. When stationary, it induces a steady velocity field that in turn ensures regular advection of nearby fluid particles. When the vortex oscillates periodically, the induced velocity field turns unsteady leading to the manifestation of chaotic advection of fluid particles. We show that the size of the fluid region engaged into chaotic advection increases almost monotonically with the increased magnitude of the vortex oscillations provided the magnitude remains relatively small. The monotonicity is accounted for the fact that the frequency of the vortex oscillations incommensurable with the proper frequency of fluid particle rotations in the steady state. Another point of interest is that it is demonstrated that bounded regions, in which the vortex may be trapped, can appear even at a significant distance from the bay. Making use of a Lagrangian indicator, examples of fluid particle advection induced by the periodic motion of the vortex inside the bay are adduced.  相似文献   
33.
Theory of wave boundary layers (WBLs) developed by Reznik (J Mar Res 71: 253–288, 2013, J Fluid Mech 747: 605–634, 2014, J Fluid Mech 833: 512–537, 2017) is extended to a rotating stratified fluid. In this case, the WBLs arise in the field of near-inertial oscillations (NIOs) driven by a tangential wind stress of finite duration. Near-surface Ekman layer is specified in the most general form; tangential stresses are zero at the lower boundary of Ekman layer and viscosity is neglected below the boundary. After the wind ceases, the Ekman pumping at the boundary becomes a linear superposition of inertial oscillations with coefficients dependent on the horizontal coordinates. The solution under the Ekman layer is obtained in the form of expansions in the vertical wave modes. We separate from the solution a part representing NIO and demonstrate development of a WBL near the Ekman layer boundary. With increasing time t, the WBL width decays inversely proportional to \( \sqrt{t} \) and gradients of fields in the WBL grow proportionally to \( \sqrt{t} \); the most part of NIO is concentrated in the WBL. Structure of the WBL depends strongly on its horizontal scale L determined by scale of the wind stress. The shorter the NIO is, the thinner and sharper the WBL is; the short-wave NIO with L smaller than the baroclinic Rossby scale LR does not penetrate deep into the ocean. On the contrary, for L?≥?LR, the WBL has a smoother vertical structure; a significant long-wave NIO signal is able to reach the oceanic bottom. An asymptotic theory of the WBL in rotating stratified fluid is suggested.  相似文献   
34.
35.
36.
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions.  相似文献   
37.
Subvolcanic environments in supra‐subduction zones are renowned for hosting epithermal deposits that often contain electrum and native gold, including bonanza examples. This study examined mineral assemblages and processes occurring in shallow‐crust volcanic settings using recent eruption (2012–2013) of the basaltic Tolbachik volcano in the Kamchatka arc. The Tolbachik eruptive system is characterized by an extensive system of lava tubes. After cessation of magma input, the tubes maintained the flow of hot oxidized gases that episodically interacted with the lava surfaces and sulphate‐chloride precipitates from volcanic gases on these surfaces. The gas‐rock interaction had strong pyrometamorphic effects that resulted in the formation of molten salt, oxidized (tenorite, hematite, Cu‐rich magnesioferrite) and skarn‐like silicate mineral assemblages. By analogy with experimental studies, we propose that a combination of these processes was responsible for extraction of metals from the basaltic wall rocks and deposition of Cu‐, Fe‐ and Cu‐Fe‐oxides and native gold.  相似文献   
38.
Most of the Southeast Atlantic Ocean is abyssal, and global bathymetries suggest that only ~3.2% of the areas beyond national jurisdiction (ABNJ; also known as the high seas, as defined in the United Nations Convention on the Law of the Sea [UNCLOS]) are shallower than 2 500 m. This study mapped bathymetry and characterised substrates in selected seamount summit areas, including several that have been or may become fishing areas. The southernmost location, the Schmitt-Ott Seamount, has exposed volcanic bedrock with surrounding flats covered by thin biogenic sediments and/or coral rubble that appears ancient. At Wüst, Vema, Valdivia and Ewing seamounts the basaltic base appears to be overlain by coral caps and other coral substrates (sheets, rubble). Adjacent summit plains have biogenic sediments of varying thickness. Vema has a flat, roughly circular summit, <100 m deep, with the shallowest point being a 22-m-deep summit knoll; the upper slopes have ancient coral framework, but the summit has a mixture of coralline and volcanic rock and coarse sediments, including extensive areas with coralline algae and kelp forests. Valdivia Bank is a 230-m-deep, flat, rocky area (~11 × 5 km), protruding steeply from the extensive multi-summit Valdivia subarea of the Walvis Ridge. The distribution of past fisheries in the Convention Area of the South East Atlantic Fisheries Organisation (SEAFO) was considered in relation to the new information on bathymetry and substrate.  相似文献   
39.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   
40.
Although Late Cambrian microbial build-ups were recognized in the Point Peak Member of the Wilberns Formation in Central Texas (USA) nearly 70 years ago, only a few studies focused specifically on the build-ups themselves. This study focuses on the interpretation of the regional (15 measured sections described in literature representing an area of 8000 km2) and local (field and drone photogrammetry studies in a 25 km2 area from within south Mason County) microbial build-up occurrence, describes their growth phases and details their interactions with the surrounding inter-build-up sediments. The study establishes the occurrence of microbial build-ups in the lower and upper Point Peak members (the Point Peak Member is informally broken up into the lower Point Peak and the upper Point Peak members separated by Plectotrophia zone). The lower Point Peak Member consists of three <1 m thick microbial bioherms and biostrome units, in addition to heterolithic and skeletal/ooid grainstone and packstone beds. One, up to 14 m thick, microbial unit associated with inter-build-up skeletal and ooid grainstone and packstone beds, intercalated with mixed siliciclastic–carbonate silt beds, characterizes the upper Point Peak member. The microbial unit in the upper Point Peak member displays a three-phase growth evolution, from an initial colonization phase on flat based, rip-up clast lenses, to a second aggradation and lateral expansion phase, into a third well-defined capping phase. The ultimate demise of the microbial build-ups is interpreted to have been triggered by an increase of water turbidity caused by a sudden influx of fine siliciclastics. The lower Point Peak member represents inner ramp shallow subtidal and intertidal facies and the upper Point Peak member corresponds to mid-outer ramp subtidal facies. Understanding the morphological architecture and depositional context of these features is of importance for identifying signatures of early life on Earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号